Prediction of postoperative liver regeneration from clinical information using a data-led mathematical model
نویسندگان
چکیده
Although the capacity of the liver to recover its size after resection has enabled extensive liver resection, post-hepatectomy liver failure remains one of the most lethal complications of liver resection. Therefore, it is clinically important to discover reliable predictive factors after resection. In this study, we established a novel mathematical framework which described post-hepatectomy liver regeneration in each patient by incorporating quantitative clinical data. Using the model fitting to the liver volumes in series of computed tomography of 123 patients, we estimated liver regeneration rates. From the estimation, we found patients were divided into two groups: i) patients restored the liver to its original size (Group 1, n = 99); and ii) patients experienced a significant reduction in size (Group 2, n = 24). From discriminant analysis in 103 patients with full clinical variables, the prognosis of patients in terms of liver recovery was successfully predicted in 85-90% of patients. We further validated the accuracy of our model prediction using a validation cohort (prediction = 84-87%, n = 39). Our interdisciplinary approach provides qualitative and quantitative insights into the dynamics of liver regeneration. A key strength is to provide better prediction in patients who had been judged as acceptable for resection by current pragmatic criteria.
منابع مشابه
Mathematical Modeling of Column-Base Connections under Monotonic Loading
Some considerable damage to steel structures during the Hyogo-ken Nanbu Earthquake occurred. Among them, many exposed-type column bases failed in several consistent patterns, such as brittle base plate fracture, excessive bolt elongation, unexpected early bolt failure, and inferior construction work, etc. The lessons from these phenomena led to the need for improved understanding of column base...
متن کاملHybrid Method of Logistic Regression and Data Envelopment Analysis for Event Prediction: A Case Study (Stroke Disease)
Abstract Predictive analytics is an area of statistics that deals with extracting information from data and using it to predict trends and behavior patterns. Many mathematical modeling has been developed and used for prediction, and in some cases, they have been found to be very strong and reliable. This paper studies different mathematical and statistical approaches for events prediction. The ...
متن کاملFactors Affecting Liver Regeneration in Living Donors After Hepatectomy
BACKGROUND The safety of living liver donors is the paramount priority of liver transplantation surgeons. The liver has an effective regeneration capacity. The regeneration rate of the liver remnant in living liver donors provides much information useful in liver surgery. The outcome of the remnant liver after hepatectomy can be affected by many different perioperative factors. MATERIAL AND MET...
متن کاملPrediction of Breast Cancer Metastasis Using Fuzzy Models based on Data from Iranian Breast Cancer Patients
Introduction: The metastasis of breast cancer, the spread of cancer to different body parts, is considered as one of the most important factors responsible for the majority of deaths caused by breast cancer in women. Diagnosing the breast cancer metastasis at the earliest stages helps to choose the best treatment and improve the quality of life for patients. Method: In the present fundamental r...
متن کاملPrediction of Breast Cancer Metastasis Using Fuzzy Models based on Data from Iranian Breast Cancer Patients
Introduction: The metastasis of breast cancer, the spread of cancer to different body parts, is considered as one of the most important factors responsible for the majority of deaths caused by breast cancer in women. Diagnosing the breast cancer metastasis at the earliest stages helps to choose the best treatment and improve the quality of life for patients. Method: In the present fundamental r...
متن کامل